Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Alignment in Shared Cross-lingual Spaces (2405.14535v1)

Published 23 May 2024 in cs.CL and cs.AI

Abstract: Despite their remarkable ability to capture linguistic nuances across diverse languages, questions persist regarding the degree of alignment between languages in multilingual embeddings. Drawing inspiration from research on high-dimensional representations in neural LLMs, we employ clustering to uncover latent concepts within multilingual models. Our analysis focuses on quantifying the \textit{alignment} and \textit{overlap} of these concepts across various languages within the latent space. To this end, we introduce two metrics \CA{} and \CO{} aimed at quantifying these aspects, enabling a deeper exploration of multilingual embeddings. Our study encompasses three multilingual models (\texttt{mT5}, \texttt{mBERT}, and \texttt{XLM-R}) and three downstream tasks (Machine Translation, Named Entity Recognition, and Sentiment Analysis). Key findings from our analysis include: i) deeper layers in the network demonstrate increased cross-lingual \textit{alignment} due to the presence of language-agnostic concepts, ii) fine-tuning of the models enhances \textit{alignment} within the latent space, and iii) such task-specific calibration helps in explaining the emergence of zero-shot capabilities in the models.\footnote{The code is available at \url{https://github.com/baselmousi/multilingual-latent-concepts}}

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com