Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Visual State Space Model with Fractal Scanning (2405.14480v2)

Published 23 May 2024 in cs.CV

Abstract: Foundational models have significantly advanced in NLP and computer vision (CV), with the Transformer architecture becoming a standard backbone. However, the Transformer's quadratic complexity poses challenges for handling longer sequences and higher resolution images. To address this challenge, State Space Models (SSMs) like Mamba have emerged as efficient alternatives, initially matching Transformer performance in NLP tasks and later surpassing Vision Transformers (ViTs) in various CV tasks. To improve the performance of SSMs, one crucial aspect is effective serialization of image patches. Existing methods, relying on linear scanning curves, often fail to capture complex spatial relationships and produce repetitive patterns, leading to biases. To address these limitations, we propose using fractal scanning curves for patch serialization. Fractal curves maintain high spatial proximity and adapt to different image resolutions, avoiding redundancy and enhancing SSMs' ability to model complex patterns accurately. We validate our method in image classification, detection, and segmentation tasks, and the superior performance validates its effectiveness.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.