Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LoRA-Ensemble: Efficient Uncertainty Modelling for Self-Attention Networks (2405.14438v4)

Published 23 May 2024 in cs.LG

Abstract: Numerous real-world decisions rely on machine learning algorithms and require calibrated uncertainty estimates. However, modern methods often yield overconfident, uncalibrated predictions. The dominant approach to quantifying the uncertainty inherent in the model is to train an ensemble of separate predictors and measure their empirical variance. In an explicit implementation, the ensemble has high computational cost and memory footprint, especially if the base model itself is already large, like modern transformers. This motivates efforts to develop implicit ensemble methods that emulate the ensemble without explicitly instantiating all its members. We introduce LoRA-Ensemble, a parameter-efficient ensembling method for self-attention networks. It is based on Low-Rank Adaptation (LoRA), originally developed for efficient LLM fine-tuning, and extends it into an implicit ensembling scheme, where all ensemble members share the same, pre-trained self-attention network, but have individual low-rank matrices for the attention projections. The resulting method not only outperforms state-of-the-art implicit techniques like BatchEnsemble, but even matches or exceeds the accuracy of an Explicit Ensemble, while at the same time achieving superior calibration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.