Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation (2405.14407v2)

Published 23 May 2024 in cs.LG

Abstract: Dynamic graph neural networks (DGNNs) have emerged and been widely deployed in various web applications (e.g., Reddit) to serve users (e.g., personalized content delivery) due to their remarkable ability to learn from complex and dynamic user interaction data. Despite benefiting from high-quality services, users have raised privacy concerns, such as misuse of personal data (e.g., dynamic user-user/item interaction) for model training, requiring DGNNs to forget'' their data to meet AI governance laws (e.g., theright to be forgotten'' in GDPR). However, current static graph unlearning studies cannot \textit{unlearn dynamic graph elements} and exhibit limitations such as the model-specific design or reliance on pre-processing, which disenable their practicability in dynamic graph unlearning. To this end, we study the dynamic graph unlearning for the first time and propose an effective, efficient, general, and post-processing method to implement DGNN unlearning. Specifically, we first formulate dynamic graph unlearning in the context of continuous-time dynamic graphs, and then propose a method called Gradient Transformation that directly maps the unlearning request to the desired parameter update. Comprehensive evaluations on six real-world datasets and state-of-the-art DGNN backbones demonstrate its effectiveness (e.g., limited drop or obvious improvement in utility) and efficiency (e.g., 7.23$\times$ speed-up) advantages. Additionally, our method has the potential to handle future unlearning requests with significant performance gains (e.g., 32.59$\times$ speed-up).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.