Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Computing the Bias of Constant-step Stochastic Approximation with Markovian Noise (2405.14285v2)

Published 23 May 2024 in stat.ML, cs.LG, and math.OC

Abstract: We study stochastic approximation algorithms with Markovian noise and constant step-size $\alpha$. We develop a method based on infinitesimal generator comparisons to study the bias of the algorithm, which is the expected difference between $\theta_n$ -- the value at iteration $n$ -- and $\theta*$ -- the unique equilibrium of the corresponding ODE. We show that, under some smoothness conditions, this bias is of order $O(\alpha)$. Furthermore, we show that the time-averaged bias is equal to $\alpha V + O(\alpha2)$, where $V$ is a constant characterized by a Lyapunov equation, showing that $\mathbb{E}[\bar{\theta}n] \approx \theta*+V\alpha + O(\alpha2)$, where $\bar{\theta}_n=(1/n)\sum{k=1}n\theta_k$ is the Polyak-Ruppert average. We also show that $\bar{\theta}_n$ converges with high probability around $\theta*+\alpha V$. We illustrate how to combine this with Richardson-Romberg extrapolation to derive an iterative scheme with a bias of order $O(\alpha2)$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: