Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting (2405.14252v1)

Published 23 May 2024 in cs.LG

Abstract: Unlike natural language processing and computer vision, the development of Foundation Models (FMs) for time series forecasting is blocked due to data scarcity. While recent efforts are focused on building such FMs by unlocking the potential of LMs for time series analysis, dedicated parameters for various downstream forecasting tasks need training, which hinders the common knowledge sharing across domains. Moreover, data owners may hesitate to share the access to local data due to privacy concerns and copyright protection, which makes it impossible to simply construct a FM on cross-domain training instances. To address these issues, we propose Time-FFM, a Federated Foundation Model for Time series forecasting by leveraging pretrained LMs. Specifically, we begin by transforming time series into the modality of text tokens. To bootstrap LMs for time series reasoning, we propose a prompt adaption module to determine domain-customized prompts dynamically instead of artificially. Given the data heterogeneity across domains, we design a personalized federated training strategy by learning global encoders and local prediction heads. Our comprehensive experiments indicate that Time-FFM outperforms state-of-the-arts and promises effective few-shot and zero-shot forecaster.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.