Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

IB-AdCSCNet:Adaptive Convolutional Sparse Coding Network Driven by Information Bottleneck (2405.14192v1)

Published 23 May 2024 in cs.CV

Abstract: In the realm of neural network models, the perpetual challenge remains in retaining task-relevant information while effectively discarding redundant data during propagation. In this paper, we introduce IB-AdCSCNet, a deep learning model grounded in information bottleneck theory. IB-AdCSCNet seamlessly integrates the information bottleneck trade-off strategy into deep networks by dynamically adjusting the trade-off hyperparameter $\lambda$ through gradient descent, updating it within the FISTA(Fast Iterative Shrinkage-Thresholding Algorithm ) framework. By optimizing the compressive excitation loss function induced by the information bottleneck principle, IB-AdCSCNet achieves an optimal balance between compression and fitting at a global level, approximating the globally optimal representation feature. This information bottleneck trade-off strategy driven by downstream tasks not only helps to learn effective features of the data, but also improves the generalization of the model. This study's contribution lies in presenting a model with consistent performance and offering a fresh perspective on merging deep learning with sparse representation theory, grounded in the information bottleneck concept. Experimental results on CIFAR-10 and CIFAR-100 datasets demonstrate that IB-AdCSCNet not only matches the performance of deep residual convolutional networks but also outperforms them when handling corrupted data. Through the inference of the IB trade-off, the model's robustness is notably enhanced.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.