Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Real Time Deep Learning Weapon Detection Techniques for Mitigating Lone Wolf Attacks (2405.14148v1)

Published 23 May 2024 in cs.CV and cs.AI

Abstract: Firearm Shootings and stabbings attacks are intense and result in severe trauma and threat to public safety. Technology is needed to prevent lone-wolf attacks without human supervision. Hence designing an automatic weapon detection using deep learning, is an optimized solution to localize and detect the presence of weapon objects using Neural Networks. This research focuses on both unified and II-stage object detectors whose resultant model not only detects the presence of weapons but also classifies with respective to its weapon classes, including handgun, knife, revolver, and rifle, along with person detection. This research focuses on (You Look Only Once) family and Faster RCNN family for model validation and training. Pruning and Ensembling techniques were applied to YOLOv5 to enhance their speed and performance. models achieve the highest score of 78% with an inference speed of 8.1ms. However, Faster R-CNN models achieve the highest AP 89%.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.