Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Modeling Other Players with Bayesian Beliefs for Games with Incomplete Information (2405.14122v1)

Published 23 May 2024 in cs.GT

Abstract: Bayesian games model interactive decision-making where players have incomplete information -- e.g., regarding payoffs and private data on players' strategies and preferences -- and must actively reason and update their belief models (with regard to such information) using observation and interaction history. Existing work on counterfactual regret minimization have shown great success for games with complete or imperfect information, but not for Bayesian games. To this end, we introduced a new CFR algorithm: Bayesian-CFR and analyze its regret bound with respect to Bayesian Nash Equilibria in Bayesian games. First, we present a method for updating the posterior distribution of beliefs about the game and other players' types. The method uses a kernel-density estimate and is shown to converge to the true distribution. Second, we define Bayesian regret and present a Bayesian-CFR minimization algorithm for computing the Bayesian Nash equilibrium. Finally, we extend this new approach to other existing algorithms, such as Bayesian-CFR+ and Deep Bayesian CFR. Experimental results show that our proposed solutions significantly outperform existing methods in classical Texas Hold'em games.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: