Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Building a stable classifier with the inflated argmax (2405.14064v2)

Published 22 May 2024 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We propose a new framework for algorithmic stability in the context of multiclass classification. In practice, classification algorithms often operate by first assigning a continuous score (for instance, an estimated probability) to each possible label, then taking the maximizer -- i.e., selecting the class that has the highest score. A drawback of this type of approach is that it is inherently unstable, meaning that it is very sensitive to slight perturbations of the training data, since taking the maximizer is discontinuous. Motivated by this challenge, we propose a pipeline for constructing stable classifiers from data, using bagging (i.e., resampling and averaging) to produce stable continuous scores, and then using a stable relaxation of argmax, which we call the "inflated argmax," to convert these scores to a set of candidate labels. The resulting stability guarantee places no distributional assumptions on the data, does not depend on the number of classes or dimensionality of the covariates, and holds for any base classifier. Using a common benchmark data set, we demonstrate that the inflated argmax provides necessary protection against unstable classifiers, without loss of accuracy.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com