Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Energy-efficient predictive control for connected, automated driving under localization uncertainty (2405.14031v2)

Published 22 May 2024 in eess.SY and cs.SY

Abstract: This paper presents a data-driven Model Predictive Control (MPC) for energy-efficient urban road driving for connected, automated vehicles. The proposed MPC aims to minimize total energy consumption by controlling the vehicle's longitudinal motion on roads with traffic lights and front vehicles. Its terminal cost function and terminal constraints are learned from data, which consists of the closed-loop state and input trajectories. The terminal cost function represents the remaining energy-to-spend starting from a given terminal state. The terminal constraints are designed to ensure that the controlled vehicle timely crosses the upcoming traffic light, adheres to traffic laws, and accounts for the front vehicles. We validate the effectiveness of our method through both simulations and vehicle-in-the-loop experiments, demonstrating 19% improvement in average energy efficiency compared to conventional approaches that involve solving a long-horizon optimal control problem for speed planning and employing a separate controller for speed tracking.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.