Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

EchoSpike Predictive Plasticity: An Online Local Learning Rule for Spiking Neural Networks (2405.13976v2)

Published 22 May 2024 in cs.NE and cs.LG

Abstract: The drive to develop artificial neural networks that efficiently utilize resources has generated significant interest in bio-inspired Spiking Neural Networks (SNNs). These networks are particularly attractive due to their potential in applications requiring low power and memory. This potential is further enhanced by the ability to perform online local learning, enabling them to adapt to dynamic environments. This requires the model to be adaptive in a self-supervised manner. While self-supervised learning has seen great success in many deep learning domains, its application for online local learning in multi-layer SNNs remains underexplored. In this paper, we introduce the "EchoSpike Predictive Plasticity" (ESPP) learning rule, a pioneering online local learning rule designed to leverage hierarchical temporal dynamics in SNNs through predictive and contrastive coding. We validate the effectiveness of this approach using benchmark datasets, demonstrating that it performs on par with current state-of-the-art supervised learning rules. The temporal and spatial locality of ESPP makes it particularly well-suited for low-cost neuromorphic processors, representing a significant advancement in developing biologically plausible self-supervised learning models for neuromorphic computing at the edge.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: