Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parametrizable Algorithm for Distributed Approximate Similarity Search with Arbitrary Distances (2405.13795v3)

Published 22 May 2024 in cs.IR and cs.DB

Abstract: Recent studies have explored alternative distance measures for similarity search in spaces with diverse topologies, emphasizing the importance of selecting an appropriate distance function to improve the performance of k-Nearest Neighbour search algorithms. However, a critical gap remains in accommodating such diverse similarity measures, as most existing methods for exact or approximate similarity search are explicitly designed for metric spaces. To address this need, we propose PDASC (Parametrizable Distributed Approximate Similarity Search with Clustering), a novel Approximate Nearest Neighbour search algorithm. PDASC combines an innovative multilevel indexing structure particularly adept at managing outliers, highly imbalanced datasets, and sparse data distributions, with the flexibility to support arbitrary distance functions achieved through the integration of clustering algorithms that inherently accommodate them. Experimental results show that PDASC constitutes a reliable ANN search method, suitable for operating in distributed data environments and for handling datasets defined in different topologies, where the selection of the most appropriate distance function is often non-trivial.

Summary

We haven't generated a summary for this paper yet.