Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Scale Feature Fusion Quantum Depthwise Convolutional Neural Networks for Text Classification (2405.13515v1)

Published 22 May 2024 in quant-ph, cs.AI, and cs.LG

Abstract: In recent years, with the development of quantum machine learning, quantum neural networks (QNNs) have gained increasing attention in the field of NLP and have achieved a series of promising results. However, most existing QNN models focus on the architectures of quantum recurrent neural network (QRNN) and self-attention mechanism (QSAM). In this work, we propose a novel QNN model based on quantum convolution. We develop the quantum depthwise convolution that significantly reduces the number of parameters and lowers computational complexity. We also introduce the multi-scale feature fusion mechanism to enhance model performance by integrating word-level and sentence-level features. Additionally, we propose the quantum word embedding and quantum sentence embedding, which provide embedding vectors more efficiently. Through experiments on two benchmark text classification datasets, we demonstrate our model outperforms a wide range of state-of-the-art QNN models. Notably, our model achieves a new state-of-the-art test accuracy of 96.77% on the RP dataset. We also show the advantages of our quantum model over its classical counterparts in its ability to improve test accuracy using fewer parameters. Finally, an ablation test confirms the effectiveness of the multi-scale feature fusion mechanism and quantum depthwise convolution in enhancing model performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com