Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Vision Transformer with Sparse Scan Prior (2405.13335v1)

Published 22 May 2024 in cs.CV

Abstract: In recent years, Transformers have achieved remarkable progress in computer vision tasks. However, their global modeling often comes with substantial computational overhead, in stark contrast to the human eye's efficient information processing. Inspired by the human eye's sparse scanning mechanism, we propose a \textbf{S}parse \textbf{S}can \textbf{S}elf-\textbf{A}ttention mechanism ($\rm{S}3\rm{A}$). This mechanism predefines a series of Anchors of Interest for each token and employs local attention to efficiently model the spatial information around these anchors, avoiding redundant global modeling and excessive focus on local information. This approach mirrors the human eye's functionality and significantly reduces the computational load of vision models. Building on $\rm{S}3\rm{A}$, we introduce the \textbf{S}parse \textbf{S}can \textbf{Vi}sion \textbf{T}ransformer (SSViT). Extensive experiments demonstrate the outstanding performance of SSViT across a variety of tasks. Specifically, on ImageNet classification, without additional supervision or training data, SSViT achieves top-1 accuracies of \textbf{84.4\%/85.7\%} with \textbf{4.4G/18.2G} FLOPs. SSViT also excels in downstream tasks such as object detection, instance segmentation, and semantic segmentation. Its robustness is further validated across diverse datasets. Code will be available at \url{https://github.com/qhfan/SSViT}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: