Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation (2405.13304v1)

Published 22 May 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients. The importance of automated and accurate brain tumor segmentation cannot be overstated. It enables medical professionals to precisely delineate tumor regions, assess tumor growth or regression, and plan targeted treatments. Various deep learning-based techniques proposed in the literature have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology. In this research paper, we propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation, and to capture complex spatial relationships and subtle tumor boundaries. The U-Net architecture has proven effective in capturing contextual information and feature representations, while attention mechanisms enhance the model's ability to focus on informative regions and refine the segmentation boundaries. By integrating these two components, our proposed architecture improves accuracy in brain tumor segmentation. We test our proposed model on the BraTS 2020 benchmark dataset and compare its performance with the state-of-the-art well-known SegNet, FCN-8s, and Dense121 U-Net architectures. The results show that our proposed model outperforms the others in terms of the evaluated performance metrics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.