Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Accelerated Evaluation of Ollivier-Ricci Curvature Lower Bounds: Bridging Theory and Computation (2405.13302v1)

Published 22 May 2024 in stat.ML, cs.DM, cs.LG, and math.OC

Abstract: Curvature serves as a potent and descriptive invariant, with its efficacy validated both theoretically and practically within graph theory. We employ a definition of generalized Ricci curvature proposed by Ollivier, which Lin and Yau later adapted to graph theory, known as Ollivier-Ricci curvature (ORC). ORC measures curvature using the Wasserstein distance, thereby integrating geometric concepts with probability theory and optimal transport. Jost and Liu previously discussed the lower bound of ORC by showing the upper bound of the Wasserstein distance. We extend the applicability of these bounds to discrete spaces with metrics on integers, specifically hypergraphs. Compared to prior work on ORC in hypergraphs by Coupette, Dalleiger, and Rieck, which faced computational challenges, our method introduces a simplified approach with linear computational complexity, making it particularly suitable for analyzing large-scale networks. Through extensive simulations and application to synthetic and real-world datasets, we demonstrate the significant improvements our method offers in evaluating ORC.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.