Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven DRO and Economic Decision Theory: An Analytical Synthesis With Bayesian Nonparametric Advancements (2405.13160v2)

Published 21 May 2024 in stat.ML and cs.LG

Abstract: We develop an analytical synthesis that bridges data-driven Distributionally Robust Optimization (DRO) and Economic Decision Theory under Ambiguity (DTA). By reinterpreting standard regularization and DRO techniques as data-driven counterparts of ambiguity-averse decision models, we provide a unified framework that clarifies their intrinsic connections. Building on this synthesis, we propose a novel DRO approach that leverages a popular DTA model of smooth ambiguity-averse preferences together with tools from Bayesian nonparametric statistics. Our baseline framework employs Dirichlet Process (DP) posteriors, which naturally extend to heterogeneous data sources via Hierarchical Dirichlet Processes (HDPs), and can be further refined to induce outlier robustness through a procedure that selectively filters poorly-fitting observations during training. Theoretical performance guarantees and convergence results, together with extensive simulations and real-data experiments, illustrate the method's favorable performance in terms of prediction accuracy and stability.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com