Papers
Topics
Authors
Recent
2000 character limit reached

Control Token with Dense Passage Retrieval

Published 13 May 2024 in cs.CL and cs.AI | (2405.13008v1)

Abstract: This study addresses the hallucination problem in LLMs. We adopted Retrieval-Augmented Generation(RAG) (Lewis et al., 2020), a technique that involves embedding relevant information in the prompt to obtain accurate answers. However, RAG also faced inherent issues in retrieving correct information. To address this, we employed the Dense Passage Retrieval(DPR) (Karpukhin et al., 2020) model for fetching domain-specific documents related to user queries. Despite this, the DPR model still lacked accuracy in document retrieval. We enhanced the DPR model by incorporating control tokens, achieving significantly superior performance over the standard DPR model, with a 13% improvement in Top-1 accuracy and a 4% improvement in Top-20 accuracy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.