Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

DuetRAG: Collaborative Retrieval-Augmented Generation (2405.13002v1)

Published 12 May 2024 in cs.CL and cs.AI

Abstract: Retrieval-Augmented Generation (RAG) methods augment the input of LLMs with relevant retrieved passages, reducing factual errors in knowledge-intensive tasks. However, contemporary RAG approaches suffer from irrelevant knowledge retrieval issues in complex domain questions (e.g., HotPot QA) due to the lack of corresponding domain knowledge, leading to low-quality generations. To address this issue, we propose a novel Collaborative Retrieval-Augmented Generation framework, DuetRAG. Our bootstrapping philosophy is to simultaneously integrate the domain fintuning and RAG models to improve the knowledge retrieval quality, thereby enhancing generation quality. Finally, we demonstrate DuetRAG' s matches with expert human researchers on HotPot QA.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube