Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DuetRAG: Collaborative Retrieval-Augmented Generation (2405.13002v1)

Published 12 May 2024 in cs.CL and cs.AI

Abstract: Retrieval-Augmented Generation (RAG) methods augment the input of LLMs with relevant retrieved passages, reducing factual errors in knowledge-intensive tasks. However, contemporary RAG approaches suffer from irrelevant knowledge retrieval issues in complex domain questions (e.g., HotPot QA) due to the lack of corresponding domain knowledge, leading to low-quality generations. To address this issue, we propose a novel Collaborative Retrieval-Augmented Generation framework, DuetRAG. Our bootstrapping philosophy is to simultaneously integrate the domain fintuning and RAG models to improve the knowledge retrieval quality, thereby enhancing generation quality. Finally, we demonstrate DuetRAG' s matches with expert human researchers on HotPot QA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: