Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DARK: Denoising, Amplification, Restoration Kit (2405.12891v1)

Published 21 May 2024 in cs.CV

Abstract: This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions, utilizing advanced machine learning and convolutional neural networks (CNNs). Traditional enhancement techniques often fail to adequately address issues like noise, color distortion, and detail loss in challenging lighting environments. Our approach leverages insights from the Retinex theory and recent advances in image restoration networks to develop a streamlined model that efficiently processes illumination components and integrates context-sensitive enhancements through optimized convolutional blocks. This results in significantly improved image clarity and color fidelity, while avoiding over-enhancement and unnatural color shifts. Crucially, our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware. Performance evaluations confirm that our model not only surpasses existing methods in enhancing low-light images but also maintains a minimal computational footprint.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.