Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diffusion-RSCC: Diffusion Probabilistic Model for Change Captioning in Remote Sensing Images (2405.12875v1)

Published 21 May 2024 in cs.CV and cs.CL

Abstract: Remote sensing image change captioning (RSICC) aims at generating human-like language to describe the semantic changes between bi-temporal remote sensing image pairs. It provides valuable insights into environmental dynamics and land management. Unlike conventional change captioning task, RSICC involves not only retrieving relevant information across different modalities and generating fluent captions, but also mitigating the impact of pixel-level differences on terrain change localization. The pixel problem due to long time span decreases the accuracy of generated caption. Inspired by the remarkable generative power of diffusion model, we propose a probabilistic diffusion model for RSICC to solve the aforementioned problems. In training process, we construct a noise predictor conditioned on cross modal features to learn the distribution from the real caption distribution to the standard Gaussian distribution under the Markov chain. Meanwhile, a cross-mode fusion and a stacking self-attention module are designed for noise predictor in the reverse process. In testing phase, the well-trained noise predictor helps to estimate the mean value of the distribution and generate change captions step by step. Extensive experiments on the LEVIR-CC dataset demonstrate the effectiveness of our Diffusion-RSCC and its individual components. The quantitative results showcase superior performance over existing methods across both traditional and newly augmented metrics. The code and materials will be available online at https://github.com/Fay-Y/Diffusion-RSCC.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.