Papers
Topics
Authors
Recent
2000 character limit reached

A conservative relaxation Crank-Nicolson finite element method for the Schrödinger-Poisson equation (2405.12848v1)

Published 21 May 2024 in math.NA and cs.NA

Abstract: In this paper, we propose a novel mass and energy conservative relaxation Crank-Nicolson finite element method for the Schr\"{o}dinger-Poisson equation. Utilizing only a single auxiliary variable, we simultaneously reformulate the distinct nonlinear terms present in both the Schr\"{o}dinger equation and the Poisson equation into their equivalent expressions, constructing an equivalent system to the original Schr\"{o}dinger-Poisson equation. Our proposed scheme, derived from this new system, operates linearly and bypasses the need to solve the nonlinear coupled equation, thus eliminating the requirement for iterative techniques. We in turn rigorously derive error estimates for the proposed scheme, demonstrating second-order accuracy in time and $(k+1)$th order accuracy in space when employing polynomials of degree up to $k$. Numerical experiments validate the accuracy and effectiveness of our method and emphasize its conservation properties over long-time simulations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.