Papers
Topics
Authors
Recent
2000 character limit reached

Generalize Polyp Segmentation via Inpainting across Diverse Backgrounds and Pseudo-Mask Refinement (2405.12784v1)

Published 21 May 2024 in cs.CV

Abstract: Inpainting lesions within different normal backgrounds is a potential method of addressing the generalization problem, which is crucial for polyp segmentation models. However, seamlessly introducing polyps into complex endoscopic environments while simultaneously generating accurate pseudo-masks remains a challenge for current inpainting methods. To address these issues, we first leverage the pre-trained Stable Diffusion Inpaint and ControlNet, to introduce a robust generative model capable of inpainting polyps across different backgrounds. Secondly, we utilize the prior that synthetic polyps are confined to the inpainted region, to establish an inpainted region-guided pseudo-mask refinement network. We also propose a sample selection strategy that prioritizes well-aligned and hard synthetic cases for further model fine-tuning. Experiments demonstrate that our inpainting model outperformed baseline methods both qualitatively and quantitatively in inpainting quality. Moreover, our data augmentation strategy significantly enhances the performance of polyp segmentation models on external datasets, achieving or surpassing the level of fully supervised training benchmarks in that domain. Our code is available at https://github.com/497662892/PolypInpainter.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.