Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data (2405.12719v2)

Published 21 May 2024 in cs.CR

Abstract: The efficacy of deep learning models is profoundly influenced by the quality of their training data. Given the considerations of data diversity, data scale, and annotation expenses, model trainers frequently resort to sourcing and acquiring datasets from online repositories. Although economically pragmatic, this strategy exposes the models to substantial security vulnerabilities. Untrusted entities can clandestinely embed triggers within the dataset, facilitating the hijacking of the trained model on the poisoned dataset through backdoor attacks, which constitutes a grave security concern. Despite the proliferation of countermeasure research, their inherent limitations constrain their effectiveness in practical applications. These include the requirement for substantial quantities of clean samples, inconsistent defense performance across varying attack scenarios, and inadequate resilience against adaptive attacks, among others. Therefore, in this paper, we endeavor to address the challenges of backdoor attack countermeasures in real-world scenarios, thereby fortifying the security of training paradigm under the data-collection manner. Concretely, we first explore the inherent relationship between the potential perturbations and the backdoor trigger, and demonstrate the key observation that the poisoned samples perform more robustness to perturbation than the clean ones through the theoretical analysis and experiments. Then, based on our key explorations, we propose a robust and clean-data-free backdoor defense framework, namely Mellivora Capensis (\texttt{MeCa}), which enables the model trainer to train a clean model on the poisoned dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com