Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Retrieval-Augmented Language Model for Extreme Multi-Label Knowledge Graph Link Prediction (2405.12656v1)

Published 21 May 2024 in cs.CL and cs.AI

Abstract: Extrapolation in LLMs for open-ended inquiry encounters two pivotal issues: (1) hallucination and (2) expensive training costs. These issues present challenges for LLMs in specialized domains and personalized data, requiring truthful responses and low fine-tuning costs. Existing works attempt to tackle the problem by augmenting the input of a smaller LLM with information from a knowledge graph (KG). However, they have two limitations: (1) failing to extract relevant information from a large one-hop neighborhood in KG and (2) applying the same augmentation strategy for KGs with different characteristics that may result in low performance. Moreover, open-ended inquiry typically yields multiple responses, further complicating extrapolation. We propose a new task, the extreme multi-label KG link prediction task, to enable a model to perform extrapolation with multiple responses using structured real-world knowledge. Our retriever identifies relevant one-hop neighbors by considering entity, relation, and textual data together. Our experiments demonstrate that (1) KGs with different characteristics require different augmenting strategies, and (2) augmenting the LLM's input with textual data improves task performance significantly. By incorporating the retrieval-augmented framework with KG, our framework, with a small parameter size, is able to extrapolate based on a given KG. The code can be obtained on GitHub: https://github.com/exiled1143/Retrieval-Augmented-Language-Model-for-Multi-Label-Knowledge-Graph-Link-Prediction.git

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.