Hybrid Digital-Analog Semantic Communications (2405.12580v2)
Abstract: Digital and analog semantic communications (SemCom) face inherent limitations such as data security concerns in analog SemCom, as well as leveling-off and cliff-edge effects in digital SemCom. In order to overcome these challenges, we propose a novel SemCom framework and a corresponding system called HDA-DeepSC, which leverages a hybrid digital-analog approach for multimedia transmission. This is achieved through the introduction of digital-analog allocation and fusion modules. To strike a balance between data rate and distortion, we design new loss functions that take into account long-distance dependencies in the semantic distortion constraint, essential information recovery in the channel distortion constraint, and optimal bit stream generation in the rate constraint. Additionally, we propose denoising diffusion-based signal detection techniques, which involve carefully designed variance schedules and sampling algorithms to refine transmitted signals. Through extensive numerical experiments, we will demonstrate that HDA-DeepSC exhibits robustness to channel variations and is capable of supporting various communication scenarios. Our proposed framework outperforms existing benchmarks in terms of peak signal-to-noise ratio and multi-scale structural similarity, showcasing its superiority in semantic communication quality.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.