Mining the Explainability and Generalization: Fact Verification Based on Self-Instruction (2405.12579v2)
Abstract: Fact-checking based on commercial LLMs has become mainstream. Although these methods offer high explainability, it falls short in accuracy compared to traditional fine-tuning approaches, and data security is also a significant concern. In this paper, we propose a self-instruction based fine-tuning approach for fact-checking that balances accuracy and explainability. Our method consists of Data Augmentation and Improved DPO fine-tuning. The former starts by instructing the model to generate both positive and negative explanations based on claim-evidence pairs and labels, then sampling the dataset according to our customized difficulty standards. The latter employs our proposed improved DPO to fine-tune the model using the generated samples. We fine-tune the smallest-scale LLaMA-7B model and evaluate it on the challenging fact-checking datasets FEVEROUS and HOVER, utilizing four fine-tuning methods and three few-shot learning methods for comparison. The experiments demonstrate that our approach not only retains accuracy comparable to, or even surpassing, traditional fine-tuning methods, but also generates fluent explanation text. Moreover, it also exhibit high generalization performance. Our method is the first to leverage self-supervised learning for fact-checking and innovatively combines contrastive learning and improved DPO in fine-tuning LLMs, as shown in the experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.