Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mining the Explainability and Generalization: Fact Verification Based on Self-Instruction (2405.12579v2)

Published 21 May 2024 in cs.CL

Abstract: Fact-checking based on commercial LLMs has become mainstream. Although these methods offer high explainability, it falls short in accuracy compared to traditional fine-tuning approaches, and data security is also a significant concern. In this paper, we propose a self-instruction based fine-tuning approach for fact-checking that balances accuracy and explainability. Our method consists of Data Augmentation and Improved DPO fine-tuning. The former starts by instructing the model to generate both positive and negative explanations based on claim-evidence pairs and labels, then sampling the dataset according to our customized difficulty standards. The latter employs our proposed improved DPO to fine-tune the model using the generated samples. We fine-tune the smallest-scale LLaMA-7B model and evaluate it on the challenging fact-checking datasets FEVEROUS and HOVER, utilizing four fine-tuning methods and three few-shot learning methods for comparison. The experiments demonstrate that our approach not only retains accuracy comparable to, or even surpassing, traditional fine-tuning methods, but also generates fluent explanation text. Moreover, it also exhibit high generalization performance. Our method is the first to leverage self-supervised learning for fact-checking and innovatively combines contrastive learning and improved DPO in fine-tuning LLMs, as shown in the experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets