Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Time Matters: Enhancing Pre-trained News Recommendation Models with Robust User Dwell Time Injection (2405.12486v1)

Published 21 May 2024 in cs.IR and cs.AI

Abstract: LLMs have revolutionized text comprehension, leading to State-of-the-Art (SOTA) news recommendation models that utilize LLMs for in-depth news understanding. Despite this, accurately modeling user preferences remains challenging due to the inherent uncertainty of click behaviors. Techniques like multi-head attention in Transformers seek to alleviate this by capturing interactions among clicks, yet they fall short in integrating explicit feedback signals. User Dwell Time emerges as a powerful indicator, offering the potential to enhance the weak signals emanating from clicks. Nonetheless, its real-world applicability is questionable, especially when dwell time data collection is subject to delays. To bridge this gap, this paper proposes two novel and robust dwell time injection strategies, namely Dwell time Weight (DweW) and Dwell time Aware (DweA). Dwe} concentrates on refining Effective User Clicks through detailed analysis of dwell time, integrating with initial behavioral inputs to construct a more robust user preference. DweA empowers the model with awareness of dwell time information, thereby facilitating autonomous adjustment of attention values in user modeling. This enhancement sharpens the model's ability to accurately identify user preferences. In our experiment using the real-world news dataset from MSN website, we validated that our two strategies significantly improve recommendation performance, favoring high-quality news. Crucially, our approaches exhibit robustness to user dwell time information, maintaining their ability to recommend high-quality content even in extreme cases where dwell time data is entirely missing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube