Papers
Topics
Authors
Recent
2000 character limit reached

Question-Based Retrieval using Atomic Units for Enterprise RAG (2405.12363v2)

Published 20 May 2024 in cs.CL

Abstract: Enterprise retrieval augmented generation (RAG) offers a highly flexible framework for combining powerful LLMs with internal, possibly temporally changing, documents. In RAG, documents are first chunked. Relevant chunks are then retrieved for a user query, which are passed as context to a synthesizer LLM to generate the query response. However, the retrieval step can limit performance, as incorrect chunks can lead the synthesizer LLM to generate a false response. This work applies a zero-shot adaptation of standard dense retrieval steps for more accurate chunk recall. Specifically, a chunk is first decomposed into atomic statements. A set of synthetic questions are then generated on these atoms (with the chunk as the context). Dense retrieval involves finding the closest set of synthetic questions, and associated chunks, to the user query. It is found that retrieval with the atoms leads to higher recall than retrieval with chunks. Further performance gain is observed with retrieval using the synthetic questions generated over the atoms. Higher recall at the retrieval step enables higher performance of the enterprise LLM using the RAG pipeline.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 4 tweets with 6 likes about this paper.