Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vectorization of Gradient Boosting of Decision Trees Prediction in the CatBoost Library for RISC-V Processors (2405.11062v1)

Published 17 May 2024 in cs.DC and cs.PF

Abstract: The emergence and rapid development of the open RISC-V instruction set architecture opens up new horizons on the way to efficient devices, ranging from existing low-power IoT boards to future high-performance servers. The effective use of RISC-V CPUs requires software optimization for the target platform. In this paper, we focus on the RISC-V-specific optimization of the CatBoost library, one of the widely used implementations of gradient boosting for decision trees. The CatBoost library is deeply optimized for commodity CPUs and GPUs. However, vectorization is required to effectively utilize the resources of RISC-V CPUs with the RVV 0.7.1 vector extension, which cannot be done automatically with a C++ compiler yet. The paper reports on our experience in benchmarking CatBoost on the Lichee Pi 4a, RISC-V-based board, and shows how manual vectorization of computationally intensive loops with intrinsics can speed up the use of decision trees several times, depending on the specific workload. The developed codes are publicly available on GitHub.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: