Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Flow Score Distillation for Diverse Text-to-3D Generation (2405.10988v2)

Published 16 May 2024 in cs.LG and cs.AI

Abstract: Recent advancements in Text-to-3D generation have yielded remarkable progress, particularly through methods that rely on Score Distillation Sampling (SDS). While SDS exhibits the capability to create impressive 3D assets, it is hindered by its inherent maximum-likelihood-seeking essence, resulting in limited diversity in generation outcomes. In this paper, we discover that the Denoise Diffusion Implicit Models (DDIM) generation process (\ie PF-ODE) can be succinctly expressed using an analogue of SDS loss. One step further, one can see SDS as a generalized DDIM generation process. Following this insight, we show that the noise sampling strategy in the noise addition stage significantly restricts the diversity of generation results. To address this limitation, we present an innovative noise sampling approach and introduce a novel text-to-3D method called Flow Score Distillation (FSD). Our validation experiments across various text-to-image Diffusion Models demonstrate that FSD substantially enhances generation diversity without compromising quality.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets