Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Private Data Leakage in Federated Human Activity Recognition for Wearable Healthcare Devices (2405.10979v2)

Published 14 May 2024 in cs.CR

Abstract: Wearable data serves various health monitoring purposes, such as determining activity states based on user behavior and providing tailored exercise recommendations. However, the individual data perception and computational capabilities of wearable devices are limited, often necessitating the joint training of models across multiple devices. Federated Human Activity Recognition (HAR) presents a viable research avenue, allowing for global model training without the need to upload users' local activity data. Nonetheless, recent studies have revealed significant privacy concerns persisting within federated learning frameworks. To address this gap, we focus on investigating privacy leakage issues within federated user behavior recognition modeling across multiple wearable devices. Our proposed system entails a federated learning architecture comprising $N$ wearable device users and a parameter server, which may exhibit curiosity in extracting sensitive user information from model parameters. Consequently, we consider a membership inference attack based on a malicious server, leveraging differences in model generalization across client data. Experimentation conducted on five publicly available HAR datasets demonstrates an accuracy rate of 92\% for malicious server-based membership inference. Our study provides preliminary evidence of substantial privacy risks associated with federated training across multiple wearable devices, offering a novel research perspective within this domain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com