Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VICAN: Very Efficient Calibration Algorithm for Large Camera Networks (2405.10952v1)

Published 25 Mar 2024 in cs.CV and cs.RO

Abstract: The precise estimation of camera poses within large camera networks is a foundational problem in computer vision and robotics, with broad applications spanning autonomous navigation, surveillance, and augmented reality. In this paper, we introduce a novel methodology that extends state-of-the-art Pose Graph Optimization (PGO) techniques. Departing from the conventional PGO paradigm, which primarily relies on camera-camera edges, our approach centers on the introduction of a dynamic element - any rigid object free to move in the scene - whose pose can be reliably inferred from a single image. Specifically, we consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step. This shift not only offers a solution to the challenges encountered in directly estimating relative poses between cameras, particularly in adverse environments, but also leverages the inclusion of numerous object poses to ameliorate and integrate errors, resulting in accurate camera pose estimates. Though our framework retains compatibility with traditional PGO solvers, its efficacy benefits from a custom-tailored optimization scheme. To this end, we introduce an iterative primal-dual algorithm, capable of handling large graphs. Empirical benchmarks, conducted on a new dataset of simulated indoor environments, substantiate the efficacy and efficiency of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com