Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Block Selective Reprogramming for On-device Training of Vision Transformers (2405.10951v1)

Published 25 Mar 2024 in cs.CV and cs.LG

Abstract: The ubiquity of vision transformers (ViTs) for various edge applications, including personalized learning, has created the demand for on-device fine-tuning. However, training with the limited memory and computation power of edge devices remains a significant challenge. In particular, the memory required for training is much higher than that needed for inference, primarily due to the need to store activations across all layers in order to compute the gradients needed for weight updates. Previous works have explored reducing this memory requirement via frozen-weight training as well storing the activations in a compressed format. However, these methods are deemed inefficient due to their inability to provide training or inference speedup. In this paper, we first investigate the limitations of existing on-device training methods aimed at reducing memory and compute requirements. We then present block selective reprogramming (BSR) in which we fine-tune only a fraction of total blocks of a pre-trained model and selectively drop tokens based on self-attention scores of the frozen layers. To show the efficacy of BSR, we present extensive evaluations on ViT-B and DeiT-S with five different datasets. Compared to the existing alternatives, our approach simultaneously reduces training memory by up to 1.4x and compute cost by up to 2x while maintaining similar accuracy. We also showcase results for Mixture-of-Expert (MoE) models, demonstrating the effectiveness of our approach in multitask learning scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.