Learning low-degree quantum objects (2405.10933v1)
Abstract: We consider the problem of learning low-degree quantum objects up to $\varepsilon$-error in $\ell_2$-distance. We show the following results: $(i)$ unknown $n$-qubit degree-$d$ (in the Pauli basis) quantum channels and unitaries can be learned using $O(1/\varepsilond)$ queries (independent of $n$), $(ii)$ polynomials $p:{-1,1}n\rightarrow [-1,1]$ arising from $d$-query quantum algorithms can be classically learned from $O((1/\varepsilon)d\cdot \log n)$ many random examples $(x,p(x))$ (which implies learnability even for $d=O(\log n)$), and $(iii)$ degree-$d$ polynomials $p:{-1,1}n\to [-1,1]$ can be learned through $O(1/\varepsilond)$ queries to a quantum unitary $U_p$ that block-encodes $p$. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded~polynomials.
- Forrelation: A problem that optimally separates quantum from classical computing. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ā15, page 307ā316, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2746539.2746547.
- Polynomials, quantum query complexity, and Grothendieckās inequality. In 31st Conference on Computational Complexity, CCC 2016, pages 25:1ā25:19, 2016. arXiv:1511.08682.
- Optimal Algorithms for Learning Quantum Phase States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023), volume 266 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1ā3:24, 2023.
- Quantum query algorithms are completely bounded forms. SIAM J.Ā Comput, 48(3):903ā925, 2019. Preliminary version in ITCSā18.
- Improved bounds on Fourier entropy and min-entropy. ACM Transactions on Computation Theory (TOCT), 13(4):1ā40, 2021.
- Two new results about quantum exact learning. Quantum, 5:587, 2021.
- Approximating the cut-norm via Grothendieckās inequality. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ā04, page 72ā80, New York, NY, USA, 2004. Association for Computing Machinery. doi:10.1145/1007352.1007371.
- Quantum algorithms for learning and testing juntas. Quantum Information Processing, 6(5):323ā348, 2007.
- Quantum lower bounds by polynomials. J. ACM, 48(4):778ā797, 2001.
- On the absolute convergence of Dirichlet series. Annals of Mathematics, pages 600ā622, 1931.
- Learning DNF over the uniform distribution using a quantum example oracle. In Proceedings of the Eighth Annual Conference on Computational Learning Theory, COLT ā95, page 118ā127, New York, NY, USA, 1995. Association for Computing Machinery. doi:10.1145/225298.225312.
- The Grothendieck constant is strictly smaller than Krivineās bound. Forum Math. Pi, 1:453ā462, 2013. Preliminary version in FOCSā11. arXiv:1103.6161.
- Harald Bohr. Ueber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletschen Reihen. Nachrichten von der Gesellschaft der Wissenschaften zu Gƶttingen, Mathematisch-Physikalische Klasse, 1913:441ā488, 1913.
- The Bohr radius of the nšnitalic_n-dimensional polydisk is equivalent to (logā”n)/nšš(\log n)/n( roman_log italic_n ) / italic_n. Advances in Mathematics, 264:726ā746, 2014.
- k-forrelation optimally separates quantum and classical query complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 1303ā1316, New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3406325.3451040.
- Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms. In 37th Computational Complexity Conference (CCC 2022), volume 234, pages 28:1ā28:21, 2022. doi:10.4230/LIPIcs.CCC.2022.28.
- Guest column: Approximate degree in classical and quantum computing. ACM SIGACT News, 51(4):48ā72, 2021.
- On Testing and Learning Quantum Junta Channels. In Gergely Neu and Lorenzo Rosasco, editors, Proceedings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pages 1064ā1094. PMLR, 12ā15 Jul 2023. URL: https://proceedings.mlr.press/v195/bao23b.html.
- Clément L Canonne. A short note on learning discrete distributions. arXiv preprint arXiv:2002.11457, 2020.
- The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1ā33:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl ā Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33, doi:10.4230/LIPIcs.ICALP.2019.33.
- Sample efficient algorithms for learning quantum channels in pac model and the approximate state discrimination problem. arXiv preprint arXiv:1810.10938, 2018.
- Speed limits and locality in many-body quantum dynamics. Reports on Progress in Physics, 2023.
- Testing and Learning Quantum Juntas Nearly Optimally. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1163ā1185. SIAM, 2023.
- Geometry of multilinear forms. Communications in Contemporary Mathematics, 22(02):1950011, 2020.
- A.Ā Davie. Lower bound for KGsubscriptš¾šŗK_{G}italic_K start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT. Unpublished, 1984.
- AMĀ Davie. Matrix norms related to Grothendieckās inequality. In Banach Spaces: Proceedings of the Missouri Conference held in Columbia, USA, June 24ā29, 1984, pages 22ā26. Springer, 2006.
- The BohnenblustāHille inequality for homogeneous polynomials is hypercontractive. Annals of mathematics, pages 485ā497, 2011.
- Lower bounds for the constants in the BohnenblustāHille inequality: The case of real scalars. Proceedings of the American Mathematical Society, 142(2):575ā580, 2014.
- On the Fourier spectrum of functions on boolean cubes. Mathematische Annalen, 374:653ā680, 2019.
- Learning low-degree functions from a logarithmic number of random queries. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 203ā207, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3519935.3519981.
- Low-degree learning and the metric entropy of polynomials. arXiv preprint arXiv:2203.09659, 2022.
- Francisco Escudero Gutiérrez. Influences of Fourier completely bounded polynomials and classical simulation of quantum algorithms. arXiv:2304.06713, 2023.
- Pauli error estimation via population recovery. Quantum, 5:549, 2021.
- Lower bounds on learning Pauli channels. arXiv preprint arXiv:2301.09192, 2023.
- Efficient estimation of Pauli channels. ACM Transactions on Quantum Computing, 1(1), dec 2020. doi:10.1145/3408039.
- Process tomography for unitary quantum channels. Journal of Mathematical Physics, 55(3), 2014.
- Alexandre Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Soc. de MatemÔtica de São Paulo, 1953.
- Uffe Haagerup. A new upper bound for the complex Grothendieck constant. Israel Journal of Mathematics, 60:199ā224, 1987.
- Learning to predict arbitrary quantum processes. PRX Quantum, 4:040337, Dec 2023. URL: https://link.aps.org/doi/10.1103/PRXQuantum.4.040337, doi:10.1103/PRXQuantum.4.040337.
- Sample-optimal tomography of quantum states. IEEE Transactions on Information Theory, 63(9):5628ā5641, 2017.
- Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10):1050ā1057, 2020.
- Fast estimation of sparse quantum noise. PRX Quantum, 2:010322, Feb 2021.
- Tight bounds on the Fourier growth of bounded functions on the hypercube. arXiv preprint arXiv:2107.06309, 2021.
- Quantum merlin-arthur proof systems: Are multiple merlins more helpful to arthur? In Algorithms and Computation: 14th International Symposium, ISAAC 2003, pages 189ā198. Springer, 2003.
- Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in Informatics (LIPIcs), pages 69:1ā69:22, 2024.
- Learning quantum circuits of T-depth one. In 2022 IEEE International Symposium on Information Theory (ISIT), pages 2213ā2218, 2022. doi:10.1109/ISIT50566.2022.9834452.
- JohnĀ E Littlewood. On bounded bilinear forms in an infinite number of variables. The Quarterly Journal of Mathematics, pages 164ā174, 1930.
- Constant depth circuits, Fourier transform, and learnability. Journal of the ACM (JACM), 40(3):607ā620, 1993.
- RichardĀ A. Low. Learning and testing algorithms for the clifford group. Phys. Rev. A, 80:052314, Nov 2009.
- A geometric technique to generate lower estimates for the constants in the bohnenblustāhille inequalities. arXiv preprint arXiv:1203.0793, 2012.
- Characterizing quantum gates via randomized benchmarking. Phys. Rev. A, 85:042311, Apr 2012. URL: https://link.aps.org/doi/10.1103/PhysRevA.85.042311, doi:10.1103/PhysRevA.85.042311.
- Quantum Boolean functions. arXiv preprint arXiv:0810.2435, 2008.
- Ashley Montanaro. Some applications of hypercontractive inequalities in quantum information theory. Journal of Mathematical Physics, 53(12), 2012.
- There exist multilinear BohnenblustāHille constants cnsubscriptššc_{n}italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with lim(cn+1ācn)subscriptšš1subscriptšš\lim(c_{n+1}-c_{n})roman_lim ( italic_c start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT - italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT )= 0. Journal of Functional Analysis, 264(2):429ā463, 2013.
- Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge, UK, 2010. doi:10.1017/CBO9780511976667.
- On the Pauli spectrum of QAC0. arXiv preprint arXiv:2311.09631, 2023.
- Ryan OāDonnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
- Efficient quantum tomography. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ā16, page 899ā912, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2897518.2897544.
- Vern Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 02 2003.
- Unbounded violation of tripartite Bell inequalities. Communications in Mathematical Physics, 279:455ā486, 2008.
- Gilles Pisier. Grothendieckās theorem, past and present. Bulletin of the American Mathematical Society, 49(2):237ā323, 2012.
- New upper bounds for the constants in the BohnenblustāHille inequality. Journal of Mathematical Analysis and Applications, 386(1):300ā307, 2012.
- Towards sharp BohnenblustāHille constants. Communications in Contemporary Mathematics, 20(03):1750029, 2018.
- J.Ā Reeds. A new lower bound on the real Grothendieck constant. Manuscript (http://www.dtc.umn.edu/~reedsj/bound2.dvi), 1991.
- BohnenblustāHille inequality for cyclic groups. arXiv preprint arXiv:2305.10560, 2023.
- Noncommutative bohnenblust-hille inequality in the heisenberg-weyl and gell-mann bases with applications to fast learning. arXiv preprint arXiv:2301.01438, 2023.
- BarbaraĀ M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 87:307ā346, Apr 2015.
- B.Ā S. Tsirelson. Quantum generalizations of Bellās inequality. Letters in Mathematical Physics, 1980. doi:10.1007/BF00417500.
- Locality and error mitigation of quantum circuits. arXiv preprint arXiv:2303.06496, 2023.
- LeslieĀ G. Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134ā1142, 1984.
- N.Ā Th. Varopoulos. On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. J. Functional Analysis, 16:83ā100, 1974. doi:10.1016/0022-1236(74)90071-8.
- Fernando Vieira CostaĀ JĆŗnior. The optimal multilinear BohnenblustāHille constants: A computational solution for the real case. Numerical Functional Analysis and Optimization, 39(15):1656ā1668, 2018.
- Probabilistic error cancellation with sparse PauliāLindblad models on noisy quantum processors. Nature Physics, pages 1ā6, 2023.
- Noncommutative BohnenblustāHille inequalities. Mathematische Annalen, pages 1ā20, 2023.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.