Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universal Joint Source-Channel Coding for Modulation-Agnostic Semantic Communication (2405.10749v2)

Published 17 May 2024 in eess.SP

Abstract: From the perspective of joint source-channel coding (JSCC), there has been significant research on utilizing semantic communication, which inherently possesses analog characteristics, within digital device environments. However, a single-model approach that operates modulation-agnostically across various digital modulation orders has not yet been established. This article presents the first attempt at such an approach by proposing a universal joint source-channel coding (uJSCC) system that utilizes a single-model encoder-decoder pair and trained vector quantization (VQ) codebooks. To support various modulation orders within a single model, the operation of every neural network (NN)-based module in the uJSCC system requires the selection of modulation orders according to signal-to-noise ratio (SNR) boundaries. To address the challenge of unequal output statistics from shared parameters across NN layers, we integrate multiple batch normalization (BN) layers, selected based on modulation order, after each NN layer. This integration occurs with minimal impact on the overall model size. Through a comprehensive series of experiments, we validate that the modulation-agnostic semantic communication framework demonstrates superiority over existing digital semantic communication approaches in terms of model complexity, communication efficiency, and task effectiveness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: