Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Language Models can Evaluate Themselves via Probability Discrepancy (2405.10516v2)

Published 17 May 2024 in cs.CL and cs.AI

Abstract: In this paper, we initiate our discussion by demonstrating how LLMs, when tasked with responding to queries, display a more even probability distribution in their answers if they are more adept, as opposed to their less skilled counterparts. Expanding on this foundational insight, we propose a new self-evaluation method ProbDiff for assessing the efficacy of various LLMs. This approach obviates the necessity for an additional evaluation model or the dependence on external, proprietary models like GPT-4 for judgment. It uniquely utilizes the LLMs being tested to compute the probability discrepancy between the initial response and its revised versions. A higher discrepancy for a given query between two LLMs indicates a relatively weaker capability. Our findings reveal that ProbDiff achieves results on par with those obtained from evaluations based on GPT-4, spanning a range of scenarios that include natural language generation (NLG) tasks such as translation, summarization, and our proposed Xiaohongshu blog writing task, and benchmarks for LLM evaluation like AlignBench, MT-Bench, and AlpacaEval, across LLMs of varying magnitudes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com