Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adversarial Robustness Guarantees for Quantum Classifiers (2405.10360v1)

Published 16 May 2024 in quant-ph, cond-mat.stat-mech, cs.LG, and nlin.CD

Abstract: Despite their ever more widespread deployment throughout society, machine learning algorithms remain critically vulnerable to being spoofed by subtle adversarial tampering with their input data. The prospect of near-term quantum computers being capable of running {quantum machine learning} (QML) algorithms has therefore generated intense interest in their adversarial vulnerability. Here we show that quantum properties of QML algorithms can confer fundamental protections against such attacks, in certain scenarios guaranteeing robustness against classically-armed adversaries. We leverage tools from many-body physics to identify the quantum sources of this protection. Our results offer a theoretical underpinning of recent evidence which suggest quantum advantages in the search for adversarial robustness. In particular, we prove that quantum classifiers are: (i) protected against weak perturbations of data drawn from the trained distribution, (ii) protected against local attacks if they are insufficiently scrambling, and (iii) protected against universal adversarial attacks if they are sufficiently quantum chaotic. Our analytic results are supported by numerical evidence demonstrating the applicability of our theorems and the resulting robustness of a quantum classifier in practice. This line of inquiry constitutes a concrete pathway to advantage in QML, orthogonal to the usually sought improvements in model speed or accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Nature Machine Intelligence 5, 813 (2023).
  2. N. Liu and P. Wittek, Phys. Rev. A 101, 062331 (2020).
  3. A. Khatun and M. Usman, arXiv preprint arXiv:2401.17009  (2024).
  4. W. Gong and D.-L. Deng, National Science Review 9, nwab130 (2022).
  5. T. Prosen and M. Znidarič, Phys. Rev. E 75, 015202(R) (2007).
  6. T. Prosen and I. Pižorn, Phys. Rev. A 76, 032316 (2007).
  7. I. Pižorn and T. Prosen, Phys. Rev. B 79, 184416 (2009).
  8. S. H. Shenker and D. Stanford, Journal of High Energy Physics 2014, 67 (2014).
  9. D. A. Roberts and B. Swingle, Physical review letters 117, 091602 (2016).
  10. J. Dubail, Journal of Physics A: Mathematical and Theoretical 50, 234001 (2017).
  11. B. Swingle, Nature Phys. 14, 988 (2018).
  12. V. Alba, Phys. Rev. B 104, 094410 (2021).
  13. N. Dowling and K. Modi, PRX Quantum 5, 010314 (2024).
  14. Y. Sekino and L. Susskind, Journal of High Energy Physics 2008, 065 (2008).
  15. L. Foini and J. Kurchan, Phys. Rev. E 99, 042139 (2019).
  16. X. Mi and et al, Science 374, 1479 (2021).
  17. R. LaRose and B. Coyle, Physical Review A 102, 032420 (2020).
  18. A. F. Agarap, arXiv preprint arXiv:1803.08375  (2018).
  19. S. Xu and B. Swingle, Nature Physics 16, 199 (2020).
  20. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
  21. J. Gray, Journal of Open Source Software 3, 819 (2018).
  22. C. H. Bennett and G. Brassard, Theoretical computer science 560, 7 (2014).
  23. M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013).
  24. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  25. L. Zhou and M. Ying, in 2017 IEEE 30th Computer Security Foundations Symposium (CSF) (IEEE, 2017) pp. 249–262.
  26. T. Schuster and N. Y. Yao, Phys. Rev. Lett. 131, 160402 (2023).
  27. A. A. Mele, arXiv preprint arXiv:2307.08956  (2023).
  28. D. A. Roberts and B. Yoshida, J. High Energy Phys. 2017, 121 (2017).
  29. E. W. Ng and M. Geller, Journal of Research of the National Bureau of Standards - B. Mathematical Sciences 73B (1969).
  30. R. Orús, Annals of Physics 349, 117 (2014).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com