Hilbert Functions and Low-Degree Randomness Extractors (2405.10277v1)
Abstract: For $S\subseteq \mathbb{F}n$, consider the linear space of restrictions of degree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted $\mathrm{h}_S(d,\mathbb{F})$, is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets $S$ of arbitrary finite grids in $\mathbb{F}n$ with a fixed size $|S|$. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size $|S|$. Understanding the smallest values of Hilbert functions is closely related to the study of degree-$d$ closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-$d$ closures of subsets of $\mathbb{F}_qn$, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-$d$ closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.