Architectures and random properties of symplectic quantum circuits (2405.10264v1)
Abstract: Parametrized and random unitary (or orthogonal) $n$-qubit circuits play a central role in quantum information. As such, one could naturally assume that circuits implementing symplectic transformation would attract similar attention. However, this is not the case, as $\mathbb{SP}(d/2)$ -- the group of $d\times d$ unitary symplectic matrices -- has thus far been overlooked. In this work, we aim at starting to right this wrong. We begin by presenting a universal set of generators $\mathcal{G}$ for the symplectic algebra $i\mathfrak{sp}(d/2)$, consisting of one- and two-qubit Pauli operators acting on neighboring sites in a one-dimensional lattice. Here, we uncover two critical differences between such set, and equivalent ones for unitary and orthogonal circuits. Namely, we find that the operators in $\mathcal{G}$ cannot generate arbitrary local symplectic unitaries and that they are not translationally invariant. We then review the Schur-Weyl duality between the symplectic group and the Brauer algebra, and use tools from Weingarten calculus to prove that Pauli measurements at the output of Haar random symplectic circuits can converge to Gaussian processes. As a by-product, such analysis provides us with concentration bounds for Pauli measurements in circuits that form $t$-designs over $\mathbb{SP}(d/2)$. To finish, we present tensor-network tools to analyze shallow random symplectic circuits, and we use these to numerically show that computational-basis measurements anti-concentrate at logarithmic depth.
- D. P. DiVincenzo, Two-bit gates are universal for quantum computation, Physical Review A 51, 1015 (1995).
- A. Y. Kitaev, Quantum computations: algorithms and error correction, Russian Mathematical Surveys 52, 1191 (1997).
- A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and quantum computation, 47 (American Mathematical Soc., 2002).
- D. Gottesman, The heisenberg representation of quantum computers, talk at, in International Conference on Group Theoretic Methods in Physics (Citeseer, 1998).
- S. Bravyi and D. Maslov, Hadamard-free circuits expose the structure of the clifford group, IEEE Transactions on Information Theory 67, 4546 (2021).
- F. De Melo, P. Ćwikliński, and B. M. Terhal, The power of noisy fermionic quantum computation, New Journal of Physics 15, 013015 (2013).
- I. Kerenidis, J. Landman, and N. Mathur, Classical and quantum algorithms for orthogonal neural networks, arXiv preprint arXiv:2106.07198 (2021).
- S. P. Jordan, Permutational quantum computing, Quantum Information & Computation 10, 470 (2010).
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
- R. Jozsa and A. Miyake, Matchgates and classical simulation of quantum circuits, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, 3089 (2008).
- D. Aharonov, J. Cotler, and X.-L. Qi, Quantum algorithmic measurement, Nature Communications 13, 1 (2022).
- I. Marvian, Restrictions on realizable unitary operations imposed by symmetry and locality, Nature Physics 18, 283 (2022).
- I. Marvian, H. Liu, and A. Hulse, Rotationally invariant circuits: Universality with the exchange interaction and two ancilla qubits, Physical Review Letters 132, 130201 (2024).
- I. Marvian, H. Liu, and A. Hulse, Qudit circuits with su (d) symmetry: Locality imposes additional conservation laws, arXiv preprint arXiv:2105.12877 (2021).
- I. Marvian, (non-)universality in symmetric quantum circuits: Why abelian symmetries are special, arXiv preprint arXiv:2302.12466 (2023).
- S. Kazi, M. Larocca, and M. Cerezo, On the universality of snsubscript𝑠𝑛s_{n}italic_s start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-equivariant k𝑘kitalic_k-body gates, arXiv preprint arXiv:2303.00728 (2023).
- B. Collins and P. Śniady, Integration with respect to the haar measure on unitary, orthogonal and symplectic group, Communications in Mathematical Physics 264, 773 (2006).
- B. Collins, S. Matsumoto, and J. Novak, The weingarten calculus, Notices Of The American Mathematical Society 69, 734 (2022).
- A. A. Mele, Introduction to haar measure tools in quantum information: A beginner’s tutorial, Quantum 8, 1340 (2024).
- A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, Random quantum circuits transform local noise into global white noise, arXiv preprint arXiv:2111.14907 (2021).
- Y. Kondo, R. Mori, and R. Movassagh, Quantum supremacy and hardness of estimating output probabilities of quantum circuits, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) , 1296 (2022).
- R. Movassagh, The hardness of random quantum circuits, Nature Physics 19, 1719 (2023).
- R. Oliveira, O. C. O. Dahlsten, and M. B. Plenio, Generic entanglement can be generated efficiently, Phys. Rev. Lett. 98, 130502 (2007).
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Physical Review X 8, 021014 (2018).
- D. Gross, K. Audenaert, and J. Eisert, Evenly distributed unitaries: On the structure of unitary designs, Journal of mathematical physics 48, 052104 (2007).
- F. G. Brandao, A. W. Harrow, and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Communications in Mathematical Physics 346, 397 (2016).
- A. W. Harrow and S. Mehraban, Approximate unitary t-designs by short random quantum circuits using nearest-neighbor and long-range gates, Communications in Mathematical Physics 401, 1531 (2023).
- N. Hunter-Jones, Unitary designs from statistical mechanics in random quantum circuits, arXiv preprint arXiv:1905.12053 (2019).
- J. Haferkamp, Random quantum circuits are approximate unitary t𝑡titalic_t-designs in depth O(nt5+o(1))𝑂𝑛superscript𝑡5𝑜1O\left(nt^{5+o(1)}\right)italic_O ( italic_n italic_t start_POSTSUPERSCRIPT 5 + italic_o ( 1 ) end_POSTSUPERSCRIPT ), Quantum 6, 795 (2022).
- R. O’Donnell, R. A. Servedio, and P. Paredes, Explicit orthogonal and unitary designs, 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) , 1240 (2023).
- J. Haah, Y. Liu, and X. Tan, Efficient approximate unitary designs from random pauli rotations, arXiv preprint arXiv:2402.05239 (2024).
- A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, Random quantum circuits anticoncentrate in log depth, PRX Quantum 3, 010333 (2022).
- M. L. Mehta, Random matrices (Elsevier, Oxford, 2004).
- H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison Wesley, San Francisco, 2001).
- A. Ferraro, S. Olivares, and M. G. Paris, Gaussian states in continuous variable quantum information (Bibliopolis, Napoli, 2005).
- S. Schirmer, I. Pullen, and A. Solomon, Identification of dynamical lie algebras for finite-level quantum control systems, Journal of Physics A: Mathematical and General 35, 2327 (2002).
- R. Zeier and T. Schulte-Herbrüggen, Symmetry principles in quantum systems theory, Journal of mathematical physics 52, 113510 (2011).
- D. García-Martín, M. Larocca, and M. Cerezo, Deep quantum neural networks form gaussian processes, arXiv preprint arXiv:2305.09957 (2023).
- A. W. Harrow, Approximate orthogonality of permutation operators, with application to quantum information, Letters in Mathematical Physics 114, 1 (2023).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
- A. Rad, Deep quantum neural networks are gaussian process, arXiv preprint arXiv:2305.12664 (2023).
- F. Girardi and G. De Palma, Trained quantum neural networks are gaussian processes, arXiv preprint arXiv:2402.08726 (2024).
- L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika 12, 134 (1918).
- F. Mezzadri, How to generate random matrices from the classical compact groups, arXiv preprint math-ph/0609050 (2006).
- S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nature Physics 2, 754 (2006).
- E. Knill, Approximation by quantum circuits, arXiv preprint quant-ph/9508006 (1995).
- P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, Journal of High Energy Physics 9, 120 (2007).
- Y. Sekino and L. Susskind, Fast scramblers, Journal of High Energy Physics 2008, 065 (2008).
- W. Brown and O. Fawzi, Scrambling speed of random quantum circuits, arXiv preprint arXiv:1210.6644 (2012).
- B. Barak, C.-N. Chou, and X. Gao, Spoofing linear cross-entropy benchmarking in shallow quantum circuits, arXiv preprint arXiv:2005.02421 (2020).
- J. Napp, Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze, arXiv preprint arXiv:2203.06174 (2022).
- A. Letcher, S. Woerner, and C. Zoufal, Tight and efficient gradient bounds for parameterized quantum circuits, arXiv preprint arXiv:2309.12681 (2023).