Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Meta-Solving for Practical Quantum Computing (2405.09115v1)

Published 15 May 2024 in quant-ph and cs.SE

Abstract: The advent of quantum algorithms has initiated a discourse on the potential for quantum speedups for optimization problems. However, several factors still hinder a practical realization of the potential benefits. These include the lack of advanced, error-free quantum hardware, the absence of accessible software stacks for seamless integration and interaction, and the lack of methods that allow us to leverage the theoretical advantages to real-world use cases. This paper works towards the creation of an accessible hybrid software stack for solving optimization problems, aiming to create a fundamental platform that can utilize quantum technologies to enhance the solving process. We introduce a novel approach that we call Hybrid Meta-Solving, which combines classical and quantum optimization techniques to create customizable and extensible hybrid solvers. We decompose mathematical problems into multiple sub-problems that can be solved by classical or quantum solvers, and propose techniques to semi-automatically build the best solver for a given problem. Implemented in our ProvideQ toolbox prototype, Meta-Solving provides interactive workflows for accessing quantum computing capabilities. Our evaluation demonstrates the applicability of Meta-Solving in industrial use cases. It shows that we can reuse state-of-the-art classical algorithms and extend them with quantum computing techniques. Our approach is designed to be at least as efficient as state-of-the-art classical techniques, while having the potential to outperform them if future advances in the quantum domain are made.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212–219.
  2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.
  3. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558, 1992.
  4. D. Stilck França and R. Garcia-Patron, “Limitations of optimization algorithms on noisy quantum devices,” Nature Physics, vol. 17, no. 11, pp. 1221–1227, 2021.
  5. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke et al., “Noisy intermediate-scale quantum algorithms,” Reviews of Modern Physics, vol. 94, no. 1, p. 015004, 2022.
  6. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
  7. E. Osaba, E. Villar-Rodriguez, A. Gomez-Tejedor, and I. Oregi, “Hybrid quantum solvers in production: how to succeed in the nisq era?” arXiv preprint arXiv:2401.10302, 2024.
  8. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
  9. V. Bergholm et al., “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” 2022.
  10. R. Seidel, S. Bock, N. Tcholtchev, and M. Hauswirth, “Qrisp: A framework for compilable high-level programming of gate-based quantum computers,” PlanQC-Programming Languages for Quantum Computing, 2022.
  11. D. Eichhorn, M. Schweikart, N. Poser, T. Osborne, and I. Schaefer, “Providing quantum readiness: The vision of the provideq toolbox,” in INFORMATIK 2023 - Designing Futures: Zukünfte gestalten.   Bonn: Gesellschaft für Informatik e.V., 2023, pp. 1129–1133.
  12. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018.
  13. M. AbuGhanem and H. Eleuch, “Nisq computers: A path to quantum supremacy,” arXiv preprint arXiv:2310.01431, 2023.
  14. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature communications, vol. 5, no. 1, p. 4213, 2014.
  15. B. Poggel, N. Quetschlich, L. Burgholzer, R. Wille, and J. M. Lorenz, “Recommending Solution Paths for Solving Optimization Problems with Quantum Computing,” in 2023 IEEE International Conference on Quantum Software (QSW).   IEEE, Jul. 2023. [Online]. Available: http://dx.doi.org/10.1109/QSW59989.2023.00017
  16. L. Palackal, B. Poggel, M. Wulff, H. Ehm, J. M. Lorenz, and C. B. Mendl, “Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing Problem,” 2023, _eprint: 2304.09629.
  17. “HybridSolver for advanced MIPs, LPs, and QUBOs: Quantagonia.” [Online]. Available: https://www.quantagonia.com/hybridsolver
  18. D.-W. Developers, “D-Wave Hybrid Solver Service: An Overview,” D-Wave Systems Inc., Tech. Rep. 14-1039A-B, 2020.
  19. “PlanQK Platform.” [Online]. Available: https://platform.planqk.de/
  20. D. Klau, H. Krause, D. Kreplin, M. Roth, C. K. Tutschku, and M.-A. Zöller, “AutoQML - a Framework for Automated Quantum Machine Learning,” 2023. [Online]. Available: https://publica.fraunhofer.de/handle/publica/458985
  21. W. Cook et al., “Concorde tsp solver.” [Online]. Available: https://www.math.uwaterloo.ca/tsp/concorde/index.html
  22. T. Koch, T. Berthold, J. Pedersen, and C. Vanaret, “Progress in mathematical programming solvers from 2001 to 2020,” EURO Journal on Computational Optimization, vol. 10, p. 100031, 2022. [Online]. Available: http://dx.doi.org/10.1016/j.ejco.2022.100031
  23. J. Kallrath, “Polylithic modeling and solution approaches using algebraic modeling systems,” Optimization Letters, vol. 5, no. 3, pp. 453–466, Aug 2011. [Online]. Available: https://doi.org/10.1007/s11590-011-0320-4
  24. J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Computational Management Science, vol. 2, no. 1, pp. 3–19, 2005.
  25. G. B. Dantzig and P. Wolfe, “The decomposition algorithm for linear programs,” Econometrica: Journal of the Econometric Society, pp. 767–778, 1961.
  26. K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems,” Roskilde: Roskilde University, vol. 12, pp. 966–980, 2017.
  27. A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, p. 74887, 2014.
  28. D-Wave, “Hybrid solvers for quadratic optimization,” 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251834718
  29. Y. Ruan, S. Marsh, X. Xue, Z. Liu, J. Wang et al., “The quantum approximate algorithm for solving traveling salesman problem,” Computers, Materials and Continua, vol. 63, no. 3, pp. 1237–1247, 2020.
  30. K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, “Efficient quantum algorithm for solving travelling salesman problem: An ibm quantum experience,” arXiv preprint arXiv:1805.10928, 2018.
  31. G. Laporte and F. Semet, “Classical heuristics for the capacitated vrp,” in The vehicle routing problem.   SIAM, 2002, pp. 109–128.
  32. S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien, “A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer,” Frontiers in ICT, vol. 6, p. 13, 2019.
  33. K. Helsgaun, “An effective implementation of the lin–kernighan traveling salesman heuristic,” European journal of operational research, vol. 126, no. 1, pp. 106–130, 2000.
  34. G. Reinelt, “Tsplib95,” Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Heidelberg, vol. 338, pp. 1–16, 1995.
  35. E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research, vol. 14, no. 4, pp. 699–719, 1966.
  36. H. Nabli, “An overview on the simplex algorithm,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 479–489, 2009.
  37. A. Montanaro, “Quantum speedup of branch-and-bound algorithms,” Physical Review Research, vol. 2, no. 1, p. 013056, 2020.
  38. G. Nannicini, “Fast quantum subroutines for the simplex method,” Operations Research, 2022.
  39. N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in Proceedings of the sixteenth annual ACM symposium on Theory of computing, 1984, pp. 302–311.
  40. N. Quetschlich, L. Burgholzer, and R. Wille, “Mqt predictor: Automatic device selection with device-specific circuit compilation for quantum computing,” arXiv preprint arXiv:2310.06889, 2023.
  41. M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder, and K. Wild, “The nisq analyzer: automating the selection of quantum computers for quantum algorithms,” in Symposium and Summer School on Service-Oriented Computing.   Springer, 2020, pp. 66–85.
  42. C. C. Chang, C.-C. Chen, C. Koerber, T. S. Humble, and J. Ostrowski, “Integer programming from quantum annealing and open quantum systems,” arXiv preprint arXiv:2009.11970, 2020.
  43. E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, “New benchmark instances for the capacitated vehicle routing problem,” European Journal of Operational Research, vol. 257, no. 3, pp. 845–858, 2017.
  44. P. Augerat, J. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi, “Computational results with a branch and cut code for the capacitated vehicle routing problem research report 949-m,” Universite Joseph Fourier, Grenoble, France, 1995.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Domenik Eichhorn (2 papers)
  2. Maximilian Schweikart (1 paper)
  3. Nick Poser (1 paper)
  4. Frederik Fiand (2 papers)
  5. Benedikt Poggel (8 papers)
  6. Jeanette Miriam Lorenz (37 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com