Hybrid Meta-Solving for Practical Quantum Computing (2405.09115v1)
Abstract: The advent of quantum algorithms has initiated a discourse on the potential for quantum speedups for optimization problems. However, several factors still hinder a practical realization of the potential benefits. These include the lack of advanced, error-free quantum hardware, the absence of accessible software stacks for seamless integration and interaction, and the lack of methods that allow us to leverage the theoretical advantages to real-world use cases. This paper works towards the creation of an accessible hybrid software stack for solving optimization problems, aiming to create a fundamental platform that can utilize quantum technologies to enhance the solving process. We introduce a novel approach that we call Hybrid Meta-Solving, which combines classical and quantum optimization techniques to create customizable and extensible hybrid solvers. We decompose mathematical problems into multiple sub-problems that can be solved by classical or quantum solvers, and propose techniques to semi-automatically build the best solver for a given problem. Implemented in our ProvideQ toolbox prototype, Meta-Solving provides interactive workflows for accessing quantum computing capabilities. Our evaluation demonstrates the applicability of Meta-Solving in industrial use cases. It shows that we can reuse state-of-the-art classical algorithms and extend them with quantum computing techniques. Our approach is designed to be at least as efficient as state-of-the-art classical techniques, while having the potential to outperform them if future advances in the quantum domain are made.
- L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212–219.
- P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.
- D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558, 1992.
- D. Stilck França and R. Garcia-Patron, “Limitations of optimization algorithms on noisy quantum devices,” Nature Physics, vol. 17, no. 11, pp. 1221–1227, 2021.
- K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke et al., “Noisy intermediate-scale quantum algorithms,” Reviews of Modern Physics, vol. 94, no. 1, p. 015004, 2022.
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
- E. Osaba, E. Villar-Rodriguez, A. Gomez-Tejedor, and I. Oregi, “Hybrid quantum solvers in production: how to succeed in the nisq era?” arXiv preprint arXiv:2401.10302, 2024.
- Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
- V. Bergholm et al., “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” 2022.
- R. Seidel, S. Bock, N. Tcholtchev, and M. Hauswirth, “Qrisp: A framework for compilable high-level programming of gate-based quantum computers,” PlanQC-Programming Languages for Quantum Computing, 2022.
- D. Eichhorn, M. Schweikart, N. Poser, T. Osborne, and I. Schaefer, “Providing quantum readiness: The vision of the provideq toolbox,” in INFORMATIK 2023 - Designing Futures: Zukünfte gestalten. Bonn: Gesellschaft für Informatik e.V., 2023, pp. 1129–1133.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018.
- M. AbuGhanem and H. Eleuch, “Nisq computers: A path to quantum supremacy,” arXiv preprint arXiv:2310.01431, 2023.
- A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature communications, vol. 5, no. 1, p. 4213, 2014.
- B. Poggel, N. Quetschlich, L. Burgholzer, R. Wille, and J. M. Lorenz, “Recommending Solution Paths for Solving Optimization Problems with Quantum Computing,” in 2023 IEEE International Conference on Quantum Software (QSW). IEEE, Jul. 2023. [Online]. Available: http://dx.doi.org/10.1109/QSW59989.2023.00017
- L. Palackal, B. Poggel, M. Wulff, H. Ehm, J. M. Lorenz, and C. B. Mendl, “Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing Problem,” 2023, _eprint: 2304.09629.
- “HybridSolver for advanced MIPs, LPs, and QUBOs: Quantagonia.” [Online]. Available: https://www.quantagonia.com/hybridsolver
- D.-W. Developers, “D-Wave Hybrid Solver Service: An Overview,” D-Wave Systems Inc., Tech. Rep. 14-1039A-B, 2020.
- “PlanQK Platform.” [Online]. Available: https://platform.planqk.de/
- D. Klau, H. Krause, D. Kreplin, M. Roth, C. K. Tutschku, and M.-A. Zöller, “AutoQML - a Framework for Automated Quantum Machine Learning,” 2023. [Online]. Available: https://publica.fraunhofer.de/handle/publica/458985
- W. Cook et al., “Concorde tsp solver.” [Online]. Available: https://www.math.uwaterloo.ca/tsp/concorde/index.html
- T. Koch, T. Berthold, J. Pedersen, and C. Vanaret, “Progress in mathematical programming solvers from 2001 to 2020,” EURO Journal on Computational Optimization, vol. 10, p. 100031, 2022. [Online]. Available: http://dx.doi.org/10.1016/j.ejco.2022.100031
- J. Kallrath, “Polylithic modeling and solution approaches using algebraic modeling systems,” Optimization Letters, vol. 5, no. 3, pp. 453–466, Aug 2011. [Online]. Available: https://doi.org/10.1007/s11590-011-0320-4
- J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Computational Management Science, vol. 2, no. 1, pp. 3–19, 2005.
- G. B. Dantzig and P. Wolfe, “The decomposition algorithm for linear programs,” Econometrica: Journal of the Econometric Society, pp. 767–778, 1961.
- K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems,” Roskilde: Roskilde University, vol. 12, pp. 966–980, 2017.
- A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, p. 74887, 2014.
- D-Wave, “Hybrid solvers for quadratic optimization,” 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251834718
- Y. Ruan, S. Marsh, X. Xue, Z. Liu, J. Wang et al., “The quantum approximate algorithm for solving traveling salesman problem,” Computers, Materials and Continua, vol. 63, no. 3, pp. 1237–1247, 2020.
- K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, “Efficient quantum algorithm for solving travelling salesman problem: An ibm quantum experience,” arXiv preprint arXiv:1805.10928, 2018.
- G. Laporte and F. Semet, “Classical heuristics for the capacitated vrp,” in The vehicle routing problem. SIAM, 2002, pp. 109–128.
- S. Feld, C. Roch, T. Gabor, C. Seidel, F. Neukart, I. Galter, W. Mauerer, and C. Linnhoff-Popien, “A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer,” Frontiers in ICT, vol. 6, p. 13, 2019.
- K. Helsgaun, “An effective implementation of the lin–kernighan traveling salesman heuristic,” European journal of operational research, vol. 126, no. 1, pp. 106–130, 2000.
- G. Reinelt, “Tsplib95,” Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Heidelberg, vol. 338, pp. 1–16, 1995.
- E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research, vol. 14, no. 4, pp. 699–719, 1966.
- H. Nabli, “An overview on the simplex algorithm,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 479–489, 2009.
- A. Montanaro, “Quantum speedup of branch-and-bound algorithms,” Physical Review Research, vol. 2, no. 1, p. 013056, 2020.
- G. Nannicini, “Fast quantum subroutines for the simplex method,” Operations Research, 2022.
- N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in Proceedings of the sixteenth annual ACM symposium on Theory of computing, 1984, pp. 302–311.
- N. Quetschlich, L. Burgholzer, and R. Wille, “Mqt predictor: Automatic device selection with device-specific circuit compilation for quantum computing,” arXiv preprint arXiv:2310.06889, 2023.
- M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder, and K. Wild, “The nisq analyzer: automating the selection of quantum computers for quantum algorithms,” in Symposium and Summer School on Service-Oriented Computing. Springer, 2020, pp. 66–85.
- C. C. Chang, C.-C. Chen, C. Koerber, T. S. Humble, and J. Ostrowski, “Integer programming from quantum annealing and open quantum systems,” arXiv preprint arXiv:2009.11970, 2020.
- E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, “New benchmark instances for the capacitated vehicle routing problem,” European Journal of Operational Research, vol. 257, no. 3, pp. 845–858, 2017.
- P. Augerat, J. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi, “Computational results with a branch and cut code for the capacitated vehicle routing problem research report 949-m,” Universite Joseph Fourier, Grenoble, France, 1995.
- Domenik Eichhorn (2 papers)
- Maximilian Schweikart (1 paper)
- Nick Poser (1 paper)
- Frederik Fiand (2 papers)
- Benedikt Poggel (8 papers)
- Jeanette Miriam Lorenz (37 papers)