Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Techniques for Showing the Decidability of the Boundedness Problem of Language Acceptors (2405.08988v2)

Published 14 May 2024 in cs.FL

Abstract: There are many types of automata and grammar models that have been studied in the literature, and for these models, it is common to determine whether certain problems are decidable. One problem that has been difficult to answer throughout the history of automata and formal language theory is to decide whether a given system $M$ accepts a bounded language (whether there exist words $w_1, \ldots,w_k$ such that $L(M) \subseteq w_1 \cdots w_k$?). Decidability of this problem has gone unanswered for the majority of automata/grammar models in the literature. Boundedness was only known to be decidable for regular and context-free languages until recently when it was shown to also be decidable for finite-automata and pushdown automata augmented with reversal-bounded counters, and for vector addition systems with states. In this paper, we develop new techniques to show that the boundedness problem is decidable for larger classes of one-way nondeterministic automata and grammar models, by reducing the problem to the decidability of boundedness for simpler classes of automata. One technique involves characterizing the models in terms of multi-tape automata. We give new characterizations of finite-turn Turing machines, finite-turn Turing machines augmented with various storage structures (like a pushdown, multiple reversal-bounded counters, partially-blind counters, etc.), and simple matrix grammars. The characterizations are then used to show that the boundedness problem for these models is decidable. Another technique uses the concept of the store language of an automaton. This is used to show that the boundedness problem is decidable for pushdown automata that can "flip" their pushdown a bounded number of times, and boundedness remains decidable even if we augment this device with additional stores.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube