Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Image to Pseudo-Episode: Boosting Few-Shot Segmentation by Unlabeled Data (2405.08765v1)

Published 14 May 2024 in cs.CV

Abstract: Few-shot segmentation (FSS) aims to train a model which can segment the object from novel classes with a few labeled samples. The insufficient generalization ability of models leads to unsatisfactory performance when the models lack enough labeled data from the novel classes. Considering that there are abundant unlabeled data available, it is promising to improve the generalization ability by exploiting these various data. For leveraging unlabeled data, we propose a novel method, named Image to Pseudo-Episode (IPE), to generate pseudo-episodes from unlabeled data. Specifically, our method contains two modules, i.e., the pseudo-label generation module and the episode generation module. The former module generates pseudo-labels from unlabeled images by the spectral clustering algorithm, and the latter module generates pseudo-episodes from pseudo-labeled images by data augmentation methods. Extensive experiments on PASCAL-$5i$ and COCO-$20i$ demonstrate that our method achieves the state-of-the-art performance for FSS.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: