Context-aware Diversity Enhancement for Neural Multi-Objective Combinatorial Optimization (2405.08604v3)
Abstract: Multi-objective combinatorial optimization (MOCO) problems are prevalent in various real-world applications. Most existing neural MOCO methods rely on problem decomposition to transform an MOCO problem into a series of singe-objective combinatorial optimization (SOCO) problems and train attention models based on a single-step and deterministic greedy rollout. However, inappropriate decomposition and undesirable short-sighted behaviors of previous methods tend to induce a decline in diversity. To address the above limitation, we design a Context-aware Diversity Enhancement algorithm named CDE, which casts the neural MOCO problems as conditional sequence modeling via autoregression (node-level context awareness) and establishes a direct relationship between the mapping of preferences and diversity indicator of reward based on hypervolume expectation maximization (solution-level context awareness). Based on the solution-level context awareness, we further propose a hypervolume residual update strategy to enable the Pareto attention model to capture both local and non-local information of the Pareto set/front. The proposed CDE can effectively and efficiently grasp the context information, resulting in diversity enhancement. Experimental results on three classic MOCO problems demonstrate that our CDE outperforms several state-of-the-art baselines.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.