Context-aware Diversity Enhancement for Neural Multi-Objective Combinatorial Optimization (2405.08604v3)
Abstract: Multi-objective combinatorial optimization (MOCO) problems are prevalent in various real-world applications. Most existing neural MOCO methods rely on problem decomposition to transform an MOCO problem into a series of singe-objective combinatorial optimization (SOCO) problems and train attention models based on a single-step and deterministic greedy rollout. However, inappropriate decomposition and undesirable short-sighted behaviors of previous methods tend to induce a decline in diversity. To address the above limitation, we design a Context-aware Diversity Enhancement algorithm named CDE, which casts the neural MOCO problems as conditional sequence modeling via autoregression (node-level context awareness) and establishes a direct relationship between the mapping of preferences and diversity indicator of reward based on hypervolume expectation maximization (solution-level context awareness). Based on the solution-level context awareness, we further propose a hypervolume residual update strategy to enable the Pareto attention model to capture both local and non-local information of the Pareto set/front. The proposed CDE can effectively and efficiently grasp the context information, resulting in diversity enhancement. Experimental results on three classic MOCO problems demonstrate that our CDE outperforms several state-of-the-art baselines.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.