Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical approximation of the stochastic heat equation with a distributional reaction term (2405.08201v2)

Published 13 May 2024 in math.PR, cs.NA, and math.NA

Abstract: We study the numerical approximation of the stochastic heat equation with a distributional reaction term. Under a condition on the Besov regularity of the reaction term, it was proven recently that a strong solution exists and is unique in the pathwise sense, in a class of H\"older continuous processes. For a suitable choice of sequence $(bk)_{k\in \mathbb{N}}$ approximating $b$, we prove that the error between the solution $u$ of the SPDE with reaction term $b$ and its tamed Euler finite-difference scheme with mollified drift $bk$, converges to $0$ in $Lm(\Omega)$ with a rate that depends on the Besov regularity of $b$. In particular, one can consider two interesting cases: first, even when $b$ is only a (finite) measure, a rate of convergence is obtained. On the other hand, when $b$ is a bounded measurable function, the (almost) optimal rate of convergence $(\frac{1}{2}-\varepsilon)$-in space and $(\frac{1}{4}-\varepsilon)$-in time is achieved. Stochastic sewing techniques are used in the proofs, in particular to deduce new regularising properties of the discrete Ornstein-Uhlenbeck process.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.