Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Numerical approximation of the stochastic heat equation with a distributional reaction term (2405.08201v2)

Published 13 May 2024 in math.PR, cs.NA, and math.NA

Abstract: We study the numerical approximation of the stochastic heat equation with a distributional reaction term. Under a condition on the Besov regularity of the reaction term, it was proven recently that a strong solution exists and is unique in the pathwise sense, in a class of H\"older continuous processes. For a suitable choice of sequence $(bk)_{k\in \mathbb{N}}$ approximating $b$, we prove that the error between the solution $u$ of the SPDE with reaction term $b$ and its tamed Euler finite-difference scheme with mollified drift $bk$, converges to $0$ in $Lm(\Omega)$ with a rate that depends on the Besov regularity of $b$. In particular, one can consider two interesting cases: first, even when $b$ is only a (finite) measure, a rate of convergence is obtained. On the other hand, when $b$ is a bounded measurable function, the (almost) optimal rate of convergence $(\frac{1}{2}-\varepsilon)$-in space and $(\frac{1}{4}-\varepsilon)$-in time is achieved. Stochastic sewing techniques are used in the proofs, in particular to deduce new regularising properties of the discrete Ornstein-Uhlenbeck process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: