Numerical approximation of the stochastic heat equation with a distributional reaction term (2405.08201v2)
Abstract: We study the numerical approximation of the stochastic heat equation with a distributional reaction term. Under a condition on the Besov regularity of the reaction term, it was proven recently that a strong solution exists and is unique in the pathwise sense, in a class of H\"older continuous processes. For a suitable choice of sequence $(bk)_{k\in \mathbb{N}}$ approximating $b$, we prove that the error between the solution $u$ of the SPDE with reaction term $b$ and its tamed Euler finite-difference scheme with mollified drift $bk$, converges to $0$ in $Lm(\Omega)$ with a rate that depends on the Besov regularity of $b$. In particular, one can consider two interesting cases: first, even when $b$ is only a (finite) measure, a rate of convergence is obtained. On the other hand, when $b$ is a bounded measurable function, the (almost) optimal rate of convergence $(\frac{1}{2}-\varepsilon)$-in space and $(\frac{1}{4}-\varepsilon)$-in time is achieved. Stochastic sewing techniques are used in the proofs, in particular to deduce new regularising properties of the discrete Ornstein-Uhlenbeck process.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.