Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Conformalized Physics-Informed Neural Networks (2405.08111v1)

Published 13 May 2024 in cs.LG

Abstract: Physics-informed neural networks (PINNs) are an influential method of solving differential equations and estimating their parameters given data. However, since they make use of neural networks, they provide only a point estimate of differential equation parameters, as well as the solution at any given point, without any measure of uncertainty. Ensemble and Bayesian methods have been previously applied to quantify the uncertainty of PINNs, but these methods may require making strong assumptions on the data-generating process, and can be computationally expensive. Here, we introduce Conformalized PINNs (C-PINNs) that, without making any additional assumptions, utilize the framework of conformal prediction to quantify the uncertainty of PINNs by providing intervals that have finite-sample, distribution-free statistical validity.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com