Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast Computation of Superquantile-Constrained Optimization Through Implicit Scenario Reduction (2405.07965v2)

Published 13 May 2024 in math.OC and cs.LG

Abstract: Superquantiles have recently gained significant interest as a risk-aware metric for addressing fairness and distribution shifts in statistical learning and decision making problems. This paper introduces a fast, scalable and robust second-order computational framework to solve large-scale optimization problems with superquantile-based constraints. Unlike empirical risk minimization, superquantile-based optimization requires ranking random functions evaluated across all scenarios to compute the tail conditional expectation. While this tail-based feature might seem computationally unfriendly, it provides an advantageous setting for a semismooth-Newton-based augmented Lagrangian method. The superquantile operator effectively reduces the dimensions of the Newton systems since the tail expectation involves considerably fewer scenarios. Notably, the extra cost of obtaining relevant second-order information and performing matrix inversions is often comparable to, and sometimes even less than, the effort required for gradient computation. Our developed solver is particularly effective when the number of scenarios substantially exceeds the number of decision variables. In synthetic problems with linear and convex diagonal quadratic objectives, numerical experiments demonstrate that our method outperforms existing approaches by a large margin: It achieves speeds more than 750 times faster for linear and quadratic objectives than the alternating direction method of multipliers as implemented by OSQP for computing low-accuracy solutions. Additionally, it is up to 25 times faster for linear objectives and 70 times faster for quadratic objectives than the commercial solver Gurobi, and 20 times faster for linear objectives and 30 times faster for quadratic objectives than the Portfolio Safeguard optimization suite for high-accuracy solution computations.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com