On the Decidability of Monadic Second-Order Logic with Arithmetic Predicates (2405.07953v2)
Abstract: We investigate the decidability of the monadic second-order (MSO) theory of the structure $\langle \mathbb{N};<,P_1, \ldots,P_k \rangle$, for various unary predicates $P_1,\ldots,P_k \subseteq \mathbb{N}$. We focus in particular on "arithmetic" predicates arising in the study of linear recurrence sequences, such as fixed-base powers $\mathsf{Pow}_k = {kn : n \in \mathbb{N}}$, $k$-th powers $\mathsf{N}_k = {nk : n \in \mathbb{N}}$, and the set of terms of the Fibonacci sequence $\mathsf{Fib} = {0,1,2,3,5,8,13,\ldots}$ (and similarly for other linear recurrence sequences having a single, non-repeated, dominant characteristic root). We obtain several new unconditional and conditional decidability results, a select sample of which are the following: $\bullet$ The MSO theory of $\langle \mathbb{N};<,\mathsf{Pow}_2, \mathsf{Fib} \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle$ is decidable assuming Schanuel's conjecture; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_4, \mathsf{N}_2 \rangle$ is decidable; $\bullet$ The MSO theory of $\langle \mathbb{N};<, \mathsf{Pow}_2, \mathsf{N}_2 \rangle$ is Turing-equivalent to the MSO theory of $\langle \mathbb{N};<,S \rangle$, where $S$ is the predicate corresponding to the binary expansion of $\sqrt{2}$. (As the binary expansion of $\sqrt{2}$ is widely believed to be normal, the corresponding MSO theory is in turn expected to be decidable.) These results are obtained by exploiting and combining techniques from dynamical systems, number theory, and automata theory.
- Boris Adamczewski and Yann Bugeaud. 2007. On the complexity of algebraic numbers I. Expansions in integer bases. Annals of Mathematics (2007), 547–565.
- Jean-Paul Allouche and Jeffrey Shallit. 2003. Automatic sequences: theory, applications, generalizations. Cambridge university press.
- Complexity of sequences defined by billiard in the cube. Bulletin de la Société Mathématique de France 122, 1 (1994), 1–12.
- Yu. Baryshnikov. 1995. Complexity of trajectories in rectangular billiards. Communications in mathematical physics 174 (1995), 43–56.
- Decidability and undecidability of theories with a predicate for the primes. The Journal of symbolic logic 58, 2 (1993), 672–687.
- Nicolas Bedaride. 2009. Directional complexity of the hypercubic billiard. Discrete mathematics 309, 8 (2009), 2053–2066.
- On the Decidability of Monadic Second-Order Logic with Arithmetic Predicates. In 2024 39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). https://doi.org/10.1145/3661814.3662119
- The Monadic Theory of Toric Words. arXiv preprint arXiv:2311.04895 (2023).
- Achim Blumensath. 2023. Monadic Second-Order Model Theory. www.fi.muni.cz/~blumens/. [Online; accessed on 09 November 2023].
- J. R. Büchi. 1990. On a Decision Method in Restricted Second Order Arithmetic. In The Collected Works of J. Richard Büchi. Springer New York, 425–435.
- J. R. Büchi and L. H. Landweber. 1969. Definability in the Monadic Second-Order Theory of Successor. The Journal of Symbolic Logic 34, 2 (1969), 166–170. http://www.jstor.org/stable/2271090
- Yann Bugeaud. 2012. Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics, Vol. 193. Cambridge University Press, Cambridge. xvi+300 pages. https://doi.org/10.1017/CBO9781139017732
- The Complexity of the A B C Problem. SIAM J. Comput. 29, 6 (2000), 1878–1888. https://doi.org/10.1137/S0097539794276853
- Olivier Carton and Wolfgang Thomas. 2002. The Monadic Theory of Morphic Infinite Words and Generalizations. Information and Computation 176, 1 (2002), 51–65.
- Henri Cohen. 2013. A course in computational algebraic number theory. Vol. 138. Springer Science & Business Media.
- Fourier-Motzkin elimination and its dual. J. Comb. Theory, Ser. A 14, 3 (1973), 288–297.
- Calvin C. Elgot and Michael O. Rabin. 1966. Decidability and Undecidability of Extensions of Second (first) Order Theory of (generalized) Successor. The Journal of Symbolic Logic 31, 02 (1966), 169–181.
- Recurrence Sequences. American Mathematical Society.
- Substitutions in dynamics, arithmetics and combinatorics. Springer.
- Steven M. Gonek and Hugh L. Montgomery. 2016. Kronecker’s Approximation Theorem. Indagationes Mathematicae 27, 2 (2016), 506–523. https://www.sciencedirect.com/science/article/pii/S0019357716000148 In Memoriam J.G. Van der Corput (1890–1975) Part 2.
- Glyn Harman. 2002. One hundred years of normal numbers. In Surveys in Number Theory. AK Peters/CRC Press, 57–74.
- What’s decidable about linear loops? Proc. ACM Program. Lang. 6, POPL (2022), 1–25.
- Serge Lang. 1966. Introduction to Transcendental Numbers. Addison-Wesley.
- M. Lothaire. 2002. Algebraic combinatorics on words. Vol. 90. Cambridge university press.
- A. Macintyre and A. J. Wilkie. 1996. On the Decidability of the Real Exponential Field. In Kreiseliana. About and Around Georg Kreisel, Piergiorgio Odifreddi (Ed.). A K Peters, 441–467.
- David W Masser. 1988. Linear relations on algebraic groups. New Advances in Transcendence Theory (1988), 248–262.
- Eugene M Matveev. 2000. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izvestiya: Mathematics 64, 6 (2000), 1217.
- Almost periodic sequences. Theoretical Computer Science 304, 1 (2003), 1–33.
- Martine Queffélec. 2006. Old and new results on normality. Lecture Notes-Monograph Series (2006), 225–236.
- Alexander Rabinovich. 2007. On decidability of monadic logic of order over the naturals extended by monadic predicates. Information and Computation 205, 6 (2007), 870–889.
- Alexander Rabinovich and Wolfgang Thomas. 2006. Decidable theories of the ordering of natural numbers with unary predicates. In International Workshop on Computer Science Logic. Springer, 562–574.
- Raphael M Robinson. 1958. Restricted set-theoretical definitions in arithmetic. Proc. Amer. Math. Soc. 9, 2 (1958), 238–242. https://doi.org/0.1090/S0002-9939-1958-0093479-4
- Andrzej Schinzel and Robert Tijdeman. 1976. On the equation ym=P(x)superscript𝑦𝑚𝑃𝑥y^{m}=P(x)italic_y start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT = italic_P ( italic_x ). Acta Arithmetica 31 (1976), 199–204.
- A. L. Semenov. 1980. On certain extensions of the arithmetic of addition of natural numbers. Mathematics of The USSR-Izvestiya 15 (1980), 401–418. https://api.semanticscholar.org/CorpusID:123422158
- A. L. Semenov. 1984. Logical Theories of One-Place Functions on the Set of Natural Numbers. Mathematics of the USSR-Izvestiya 22, 3 (1984), 587–618.
- Wolfgang Thomas. 1997. Languages, automata, and logic. In Handbook of Formal Languages: Volume 3 Beyond Words. Springer, 389–455.
- Michel Waldschmidt. 2000. Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables. Springer Berlin Heidelberg, Berlin, Heidelberg.