Papers
Topics
Authors
Recent
2000 character limit reached

On Local Mutual-Information Privacy (2405.07596v3)

Published 13 May 2024 in cs.IT and math.IT

Abstract: Local mutual-information privacy (LMIP) is a privacy notion that aims to quantify the reduction of uncertainty about the input data when the output of a privacy-preserving mechanism is revealed. We study the relation of LMIP with local differential privacy (LDP), the de facto standard notion of privacy in context-independent (CI) scenarios, and with local information privacy (LIP), the state-of-the-art notion for context-dependent settings. We establish explicit conversion rules, i.e., bounds on the privacy parameters for an LMIP mechanism to also satisfy LDP/LIP, and vice versa. We use our bounds to formally verify that LMIP is a weak privacy notion. We also show that uncorrelated Gaussian noise is the best-case noise in terms of CI-LMIP if both the input data and the noise are subject to an average power constraint.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.